
深度揭示煤體中多相水分(吸附相與自由相)的分布規(guī)律對(duì)煤層氣工程開(kāi)發(fā)至關(guān)重要,然而其定量表征方法與微觀機(jī)理研究仍存在空白。本文通過(guò)理論與實(shí)驗(yàn)相結(jié)合,提出了一種創(chuàng)新且更精確的煤體多相水表征方法,該方法不僅適用于飽和含水煤體,也適用于未飽和狀態(tài)。首先,對(duì)六種不同變質(zhì)程度的煤樣開(kāi)展傳統(tǒng)核磁共振(NMR)-離心聯(lián)測(cè)實(shí)驗(yàn),以評(píng)估實(shí)驗(yàn)多相水分布特征。結(jié)果表明,自由水含量隨離心壓力增加顯著上升,最終趨于穩(wěn)定極限值,該變化規(guī)律近似符合類Langmuir方程,可進(jìn)一步用于估算理論多相水含量。此外,受實(shí)驗(yàn)室離心機(jī)壓力極限所限,實(shí)驗(yàn)測(cè)得的吸附水含量普遍高于理論值。通過(guò)整合離心實(shí)驗(yàn)數(shù)據(jù)與典型孔隙結(jié)構(gòu)參數(shù),結(jié)合吸附比例方程,建立了改進(jìn)型多相水分析模型。研究顯示,吸附水密度均值為1.59 g/cm3,平均吸附層厚度為0.63 nm。煤體表面弛豫率最優(yōu)估值分布于2.2-5.2 nm/ms區(qū)間。實(shí)驗(yàn)估算的多相水核磁共振譜圖與理論模型存在系統(tǒng)性偏差,表明僅依靠實(shí)驗(yàn)數(shù)據(jù)不僅會(huì)導(dǎo)致實(shí)驗(yàn)室分析誤差,更將影響礦場(chǎng)測(cè)井解釋的準(zhǔn)確性。本文提出的多相水評(píng)估新方法可實(shí)現(xiàn)(未)飽和煤體中吸附水/自由水含量及空間分布的定量表征。
煤層氣開(kāi)發(fā)在化石清潔能源補(bǔ)充、降低煤礦安全事故及減少溫室氣體排放方面具有關(guān)鍵作用。煤層氣儲(chǔ)層在原狀地層環(huán)境中呈現(xiàn)為液-氣-固三相共存體系。其中,作為不可忽略的流體組分,煤孔隙-裂隙系統(tǒng)中水分的動(dòng)態(tài)變化會(huì)改變儲(chǔ)層物性特征,進(jìn)而影響煤層氣水力壓裂效果。煤中水分可分為性質(zhì)迥異的兩種相態(tài):其一為吸附相水,其二為自由相水。
孔隙-裂隙系統(tǒng)中賦存的多相水(吸附相與自由相)深刻影響甲烷的吸附/解吸-運(yùn)移-產(chǎn)出的全過(guò)程,其動(dòng)態(tài)作用機(jī)制可歸納為:(a)孔隙水的存在會(huì)占據(jù)形態(tài)學(xué)空間區(qū)域,導(dǎo)致原位條件下游離甲烷含量顯著降低;(b)由于競(jìng)爭(zhēng)吸附效應(yīng),吸附水分子會(huì)占據(jù)基質(zhì)表面的甲烷吸附位點(diǎn),直接導(dǎo)致甲烷吸附容量下降;(c)此外,煤孔隙-裂隙系統(tǒng)中的水鎖效應(yīng)會(huì)阻礙甲烷與基質(zhì)表面接觸,進(jìn)一步削弱甲烷吸附能力;(d)孔隙水對(duì)甲烷運(yùn)移產(chǎn)生顯著阻遏作用,進(jìn)而影響甲烷擴(kuò)散能力與滲透率;(e)煤層氣產(chǎn)能受甲烷賦存數(shù)量與運(yùn)移特性的顯著制約,而這些特性與煤中多相水分布密切關(guān)聯(lián)。因此,準(zhǔn)確評(píng)估煤中多相水特征對(duì)煤層氣勘探開(kāi)發(fā)具有重要意義。
盡管學(xué)界已從多角度對(duì)煤中多相水特征展開(kāi)研究,但由于缺乏精確評(píng)估吸附相與自由相水行為的理論與實(shí)驗(yàn)方法,煤孔隙內(nèi)液態(tài)水的微觀作用機(jī)制仍不明確。本文提出了一種結(jié)合核磁共振-離心實(shí)驗(yàn)與液體吸附理論的煤多相水定量表征新方法。全文研究框架如下:首先,對(duì)六種不同變質(zhì)程度煤樣開(kāi)展系列核磁共振-離心測(cè)試,逐級(jí)估算多相水分布;其次,通過(guò)整合核磁共振-離心實(shí)驗(yàn)與低溫氮吸附實(shí)驗(yàn)數(shù)據(jù),建立改進(jìn)的吸附比例模型;繼而,系統(tǒng)確定完全飽和狀態(tài)下理論多相水分布特征;最后,探討本研究提出的多相水定量表征方法在現(xiàn)場(chǎng)評(píng)估中的應(yīng)用前景。
本研究采集了來(lái)自中國(guó)準(zhǔn)噶爾盆地、鄂爾多斯盆地和沁水盆地的六種不同煤級(jí)煤樣。基于鏡質(zhì)組最大反射率指標(biāo),所選煤樣涵蓋次煙煤、高揮發(fā)分煙煤、中揮發(fā)分煙煤、低揮發(fā)分煙煤、貧煤及無(wú)煙煤(表1)。
表1 實(shí)驗(yàn)煤樣詳細(xì)巖石物理特征

樣品制備過(guò)程中,將大塊煤樣破碎至60-80目(0.25-0.18 mm),隨后置于368 K(95 ℃)烘箱中干燥12小時(shí)以去除雜質(zhì)氣體與水分。樣品干燥后,將所有煤粉置于真空系統(tǒng)中脫氣5小時(shí)以確保充分去除殘留氣體。隨后在77 K(-196 ℃)條件下測(cè)試氮?dú)馕?脫附等溫線以獲取孔隙結(jié)構(gòu)信息。
核磁共振-離心聯(lián)測(cè)實(shí)驗(yàn)流程如下(圖1):(1)沿煤層層面方向鉆取直徑2.5 cm、長(zhǎng)度5.0 cm的圓柱狀煤芯;(2)將煤芯置于368 K真空干燥箱中處理12 h;(3)將干燥煤樣移入紐邁核磁共振儀(型號(hào):中尺寸核磁共振成像分析儀MesoMR23-060H,蘇州紐邁分析儀器股份有限公司 )采集基礎(chǔ)核磁信號(hào);(4)將干燥煤芯置于真空飽和裝置中,采用去離子水在壓力環(huán)境下飽和處理至少24 h;(5)用無(wú)磁性保鮮膜包裹飽和水煤樣,置入核磁共振儀測(cè)定T2分布;(6)將煤芯分別置于1.51、2.17、2.95、3.86、4.88、6.03及7.29 MPa離心壓力(對(duì)應(yīng)離心機(jī)11000轉(zhuǎn)/分鐘工況)下處理2 h以達(dá)到理想離心狀態(tài);(7)采用同一臺(tái)紐邁核磁共振儀測(cè)定不同離心壓力處理后煤樣的T2分布。需說(shuō)明的是,本實(shí)驗(yàn)采用的核磁共振參數(shù)與前期研究保持一致。

圖1 核磁共振-離心實(shí)驗(yàn)流程示意圖
純水的T2譜呈單峰分布,峰值位于200-1000 ms區(qū)間。值得注意的是,隨著水質(zhì)純度提升,T2譜峰呈現(xiàn)左移現(xiàn)象,這可能是由于更高純度水中氫核的自旋運(yùn)動(dòng)受到抑制所致。此外,純水的核磁共振總信號(hào)幅度與其質(zhì)量呈線性相關(guān)(相關(guān)系數(shù)約0.9933),表明可直接通過(guò)核磁信號(hào)幅度計(jì)算樣品含水量。

圖2 不同水質(zhì)純水的T2分布特征
離心實(shí)驗(yàn)是評(píng)估煤中多相水特征的常用方法,其理論依據(jù)在于自由水會(huì)被離心驅(qū)替,而吸附水則保留在孔隙系統(tǒng)中。飽和水煤樣的核磁共振T2譜呈現(xiàn)多峰分布特征:最左側(cè)峰(峰1)位于0.01-10 ms區(qū)間,中間峰(峰2)分布于10-100 ms范圍(圖3)。對(duì)于SBC等特定煤樣,在100-1000 ms區(qū)間可觀測(cè)到第三個(gè)譜峰(峰3),表明該類煤樣發(fā)育裂隙結(jié)構(gòu)。
隨著離心實(shí)驗(yàn)的進(jìn)行,不同譜峰的T2分布呈現(xiàn)差異化演變規(guī)律。峰1的核磁信號(hào)幅度隨離心壓力增加僅略有降低(圖3),而峰2與峰3的信號(hào)幅度則呈現(xiàn)顯著衰減趨勢(shì)(圖3)。這種信號(hào)衰減是由于自由水被離心驅(qū)替所致。

圖3 不同離心條件下煤樣的T2譜
1.3 基于低溫氮?dú)馕降目紫督Y(jié)構(gòu)特征
低溫氮?dú)馕綄?shí)驗(yàn)測(cè)得的BET比表面積與BJH孔體積結(jié)果列于表2,其值分別分布于0.51–3.84 m2/g與0.63–10.76×10-3 mL/g區(qū)間。圖4展示了約77 K溫度下的氮?dú)馕?脫附曲線,根據(jù)滯后環(huán)形態(tài)差異可細(xì)分為四種類型(表2):(1)如SBC樣品所示,在P/P?=0.4–1區(qū)間存在明顯吸附/脫附滯后環(huán),表征墨水瓶形孔隙結(jié)構(gòu);(2)如AC樣品所示,吸附支與脫附支近乎重合且滯后環(huán)可忽略,主要對(duì)應(yīng)半開(kāi)放板狀孔隙;(3)如HVB樣品所示,曲線形態(tài)與AC樣品類似,但在P/P?=0.7–1區(qū)間存在微弱滯后環(huán),指示開(kāi)放板狀孔隙特征;(4)如MVB樣品所示,除存在明顯滯后環(huán)外與SBC樣品曲線相似,反映半開(kāi)放錐形孔隙結(jié)構(gòu)。
表2 實(shí)驗(yàn)煤樣低溫氮?dú)馕綔y(cè)試結(jié)果


圖4 煤樣的低溫氮?dú)馕?脫附曲線
離心過(guò)程中,自由相水被驅(qū)替排出,而保留于原始孔隙系統(tǒng)的水相則表征為吸附相。通常優(yōu)選離心設(shè)備的最大離心壓力進(jìn)行多相水含量評(píng)估——以最大限度去除自由水。
圖5展示了根據(jù)飽和水狀態(tài)與最大離心壓力下核磁共振T2譜確定的煤樣多相水分類。經(jīng)最大壓力離心后,最右側(cè)兩個(gè)譜峰的信號(hào)幅度顯著降低。通過(guò)與左側(cè)T2譜峰對(duì)比可知,自由相水分布于消失區(qū)域(圖5綠色區(qū)域),而最大離心壓力后的T2譜則表征吸附相水。基于核磁信號(hào)幅度與水質(zhì)量的定量關(guān)系(見(jiàn)1.1節(jié)),通過(guò)核磁共振-離心實(shí)驗(yàn)測(cè)定的自由水與吸附水含量如圖6所示。結(jié)果表明:實(shí)驗(yàn)測(cè)定的自由水含量分布于4.26-24.82 mg/g區(qū)間,平均值為15.44 mg/g;吸附水含量介于15.89-39.27 mg/g,平均值為25.20 mg/g。吸附相權(quán)重比為0.16-1.05,總體以吸附相水為主導(dǎo)。

圖5 基于核磁共振-離心實(shí)驗(yàn)方法的多相水分類

圖6 實(shí)驗(yàn)測(cè)定的煤樣自由水與吸附水含量
如圖7和表2所示,可動(dòng)水含量隨離心壓力的變化規(guī)律顯示:特定煤樣的自由水含量隨離心壓力增加而上升,其變化趨勢(shì)符合朗繆爾方程擬合曲線(相關(guān)系數(shù)0.9769-0.9950,表3)。因此,特定離心壓力下的可動(dòng)水含量可用類Langmuir方程描述:

其中,Cm代表實(shí)驗(yàn)測(cè)試獲得的可動(dòng)水含量,單位為mg/g;Cf代表無(wú)限大離心壓力下的最大可動(dòng)水含量(即自由水含量),單位為mg/g;ΔP代表實(shí)驗(yàn)離心壓力,單位為MPa;ΔPL代表中值離心壓力,單位為MPa。
表3 實(shí)驗(yàn)煤樣巖石物理特征參數(shù)


圖7 煤樣離心壓力與可動(dòng)水含量關(guān)系

圖8 離心實(shí)驗(yàn)法與理論模型測(cè)定的自由水含量對(duì)比
微觀尺度上,正如分子模擬所驗(yàn)證,水分子以有序方式吸附于孔隙表面形成吸附層,同時(shí)以自由態(tài)分布于孔隙內(nèi)部。Li等學(xué)者提出的吸附比例方程理論模型,可進(jìn)一步用于表征真實(shí)多相水分布。該吸附比例方程可簡(jiǎn)表述為:

其中,ra為吸附水與總水的質(zhì)量比,量綱為1;Ca為理論計(jì)算的煤樣吸附水含量,單位為mg/g;Cf為理論計(jì)算的煤樣自由水含量,單位為mg/g;ρa與ρf 分別為吸附水與自由水的密度,單位為g/cm3;V為總孔體積,單位為10-3 mL/g;S為比表面積,單位為m2/g;H為平均吸附層厚度,單位為nm。(注:S與V參數(shù)分別通過(guò)BET理論和BJH模型從低溫氮?dú)馕綌?shù)據(jù)獲取。)
基于核磁共振測(cè)量原理,對(duì)應(yīng)水分子的T2弛豫時(shí)間可表示為:

其中,ρ2為煤體表面弛豫率,單位為nm/ms。聯(lián)立公式(2)與(3),可推導(dǎo)出理論吸附比例的表達(dá)式為:

實(shí)驗(yàn)測(cè)定吸附比例與公式(4)理論值之間的差異——無(wú)限趨近于零——標(biāo)志著表面弛豫率達(dá)到最優(yōu)值。獲得各煤樣表面弛豫率后,按如下方法估算每個(gè)T2時(shí)間點(diǎn)(T2i)的吸附比例:

需說(shuō)明的是,核磁共振-離心實(shí)驗(yàn)在室溫(約25℃)條件下進(jìn)行,因此標(biāo)準(zhǔn)大氣壓下的自由相水密度(ρf)取0.997 g/cm3。如圖9所示,體積-表面積比與自由相-吸附相水含量比值呈現(xiàn)顯著正線性關(guān)系。基于圖9擬合結(jié)果與公式(2),可計(jì)算出吸附相水密度ρa為1.59 g/cm3,平均吸附層厚度H為0.63 nm。

圖9 煤樣中自由/吸附水含量比(Cf/Ca)與孔體積/比表面積比(V/S)關(guān)系
基于實(shí)驗(yàn)吸附比例(取值見(jiàn)第4.1.1節(jié))無(wú)限趨近于理論值的假設(shè),煤體表面弛豫率可通過(guò)下式進(jìn)行計(jì)算:

通過(guò)賦予不同表面弛豫率數(shù)值,圖10展示了實(shí)驗(yàn)吸附比例與理論值的絕對(duì)誤差δ變化規(guī)律。模擬結(jié)果表明:絕對(duì)誤差隨表面弛豫率增大呈現(xiàn)先減小后增大的趨勢(shì),且在誤差趨近于零時(shí)存在最優(yōu)解。經(jīng)計(jì)算獲得煤樣的最優(yōu)表面弛豫率分布于2.2-5.2 nm/ms區(qū)間,平均值為3.35 nm/ms。

圖10 煤樣最優(yōu)表面弛豫率計(jì)算
基于公式(5)的吸附比例模型及完全飽和狀態(tài)T2分布數(shù)據(jù),吸附相與自由相水的核磁共振T2特征如圖11所示。結(jié)果表明:吸附相水主要分布于較小T2區(qū)間(約0.02-10 ms),且呈單峰分布特征;自由相水則對(duì)應(yīng)較長(zhǎng)橫向弛豫時(shí)間,呈現(xiàn)多峰分布結(jié)構(gòu)。值得注意的是,煤體中吸附相與自由相水的T2分布存在重疊區(qū)域,表明在特定孔徑范圍內(nèi)多相水必然共存。
理論上存在臨界孔徑值(記為rc):當(dāng)孔隙半徑小于rc時(shí)僅存在吸附相水,而當(dāng)孔隙半徑大于rc時(shí)吸附水與自由水共存。根據(jù)核磁共振理論方法,孔隙半徑(r)與T2弛豫時(shí)間的關(guān)系可表述為:

其中,F(xiàn)s為孔隙幾何因子:平行板狀孔隙取值為1,柱狀孔隙取值為2,球狀孔隙取值為3。結(jié)合低溫氮?dú)馕綔y(cè)定的孔隙形態(tài)與煤體表面弛豫率,圖12展示了吸附/自由相水質(zhì)量比與孔徑的關(guān)聯(lián)規(guī)律。結(jié)果表明:吸附相水隨孔徑增大而逐漸減少,自由相水則呈現(xiàn)持續(xù)增加趨勢(shì)。平行板狀、柱狀與球狀孔隙的臨界孔徑閾值分別為H、2H與3H。當(dāng)平行板狀、柱狀與球狀孔隙尺寸分別小于0.63 nm、1.26 nm與1.89 nm時(shí),孔隙水完全由吸附相主導(dǎo)。

圖 11 煤樣中吸附相與自由相水的理論核磁共振T2分布特征

圖?12 吸附/自由相水質(zhì)量比與孔徑的對(duì)應(yīng)關(guān)系
現(xiàn)場(chǎng)煤體多相水含量通常基于核磁共振測(cè)井與經(jīng)驗(yàn)性T2截止值(T2C)聯(lián)合評(píng)估,遵循以下原則:T2 < T2C對(duì)應(yīng)吸附相水,T2 > T2C對(duì)應(yīng)自由相水。但需注意,不同物化性質(zhì)的煤樣其T2截止值存在顯著差異,直接應(yīng)用核磁共振測(cè)井可能導(dǎo)致現(xiàn)場(chǎng)多相水含量評(píng)估失真。本文建立的吸附比例方程多相水再評(píng)估方法,不僅適用于實(shí)驗(yàn)室分析,還可擴(kuò)展至現(xiàn)場(chǎng)多相水評(píng)估。
該方法的現(xiàn)場(chǎng)實(shí)施流程如下:(a)將新鮮煤芯置于無(wú)磁性密封樣品罐以保持原始含水狀態(tài);(b)將樣品罐置于核磁共振儀測(cè)定原始T2分布;(c)取出煤芯轉(zhuǎn)入真空飽和裝置實(shí)現(xiàn)完全水飽和;(d)通過(guò)低溫氮?dú)馕綔y(cè)試獲取比表面積與孔體積;(e)基于最大相似性理論(即公式(6))計(jì)算最優(yōu)核磁共振表面弛豫率;(f)結(jié)合步驟(e)與公式(5)建立吸附比例模型(公式(5)中吸附水相密度與平均吸附層厚度默認(rèn)取1.59 g/cm3與0.63 nm);(g)融合原始T2分布(步驟a)與吸附比例分析結(jié)果(步驟f)評(píng)估吸附/自由水核磁共振分布。
本研究基于核磁共振測(cè)試與吸附比例方程,建立了適用于不同煤級(jí)的多相水精確評(píng)估方法,主要結(jié)論如下:
(1)核磁共振-離心實(shí)驗(yàn)測(cè)得吸附水與自由水含量分別為15.89-39.27 mg/g與4.26-24.82 mg/g。自由水含量與離心壓力的關(guān)聯(lián)規(guī)律符合類朗繆爾方程。因?qū)嶒?yàn)室離心壓力無(wú)法達(dá)到理想極限值,實(shí)驗(yàn)測(cè)試值與理論計(jì)算結(jié)果存在系統(tǒng)性偏差。
(2)通過(guò)融合吸附比例方程與典型實(shí)驗(yàn)數(shù)據(jù)(離心、比表面積及孔體積),計(jì)算出煤體吸附水平均密度約為1.59 g/cm3,平均吸附層厚度約為0.63 nm。基于最大相似性理論反演獲得最優(yōu)表面弛豫率分布于2.2-5.2 nm/ms區(qū)間。
(3)采用本文提出的多相水表征方法,重新評(píng)估了飽和狀態(tài)下吸附/自由相水的理論核磁共振T2分布,發(fā)現(xiàn)其與實(shí)驗(yàn)結(jié)果存在顯著差異。驗(yàn)證表明,該多相水再評(píng)估方法不僅適用于實(shí)驗(yàn)室精細(xì)分析,還可推廣至礦場(chǎng)測(cè)井解釋,特別為現(xiàn)場(chǎng)多相水評(píng)估提供了新方案。

中尺寸核磁共振成像分析儀
如您對(duì)以上應(yīng)用感興趣,歡迎咨詢:15618820062
參考文獻(xiàn)
[1] Sijian Zheng, Yanbin Yao, Dameng Liu, Shuxun Sang, Shiqi Liu, Meng Wang, Xiaozhi Zhou, Ran Wang, Sijie Han. Re-evaluating the accurate multiphase water distribution in coals: Unifying experiment and theory[J]. Chemical Engineering Journal, 2023, 464, 142637.
電話:400-060-3233
售后:400-060-3233
返回頂部